Monthly Archives: January 2007

Liquid Metal

Check out this video that compares the elastic properties — in particular, the resilience or the amount of stored elastic energy — of three materials: an amorphous alloy, stainless steel and titanium. The video is from Liquidmetal Technologies, a California based company founded to commercialize the research on amorphous alloys (or metallic glasses) conducted at Caltech by Prof. William L. Johnson. Do check out the Liquidmetal website; there is a wealth of materials-oriented information (including applications of amorphous alloys) there.

Advertisements

iMechanica links

The iMechanica site is a treasure. The good folks there post not only their recent papers and preprints, but also stuff that’s of interest to a general audience as well. Let me just link to a bunch of these general purpose things that appeared there recently:

In addition, there are course notes on offer:

Here are some links that should interest materials people:

And finally, here are some tips for finding information on iMechanica:

MIT’s progress in making synthetic spider silk

From this report [via slashdot]:

“If you look closely at the structure of spider silk, it is filled with a lot of very small crystals,” said Gareth McKinley, a professor of mechanical engineering and part of the group that devised the new method of producing the material.

“It’s highly reinforced.”

The secret of spider silk’s combined strength and flexibility, according to scientists, has to do with the arrangement of the nano-crystalline reinforcement of the silk as it is being produced—in other words, the way these tiny crystals are oriented towards (and adhere to) the stretchy protein.

Emulating this process in a synthetic polymer, the MIT team focused on reinforcing solutions of commercial rubbery substance known as polyurethane elastomer with nano-sized clay platelets instead of simply heating the mixing the molten plastics with reinforcing agents.